60 research outputs found

    The Future of the Public Trust: The Muddied Waters of Rockweed Management in Maine

    Get PDF
    Seaweeds, or more properly, intertidal macroalgae have never been easy to classify—by law or by science: they are not part of the animal kingdom, nor part of the plant kingdom (and scientific controversies about their phylogenetic placement abound), they are not completely on terra firma, nor completely submerged in ocean water. One such organism that exists at the space in between land and sea—the brown alga commonly known as Rockweed (Ascophyllum nodosum) presents an intriguing legal question with implications that extend far beyond the shoreline. Recently, in Ross v. Acadian Seaplants Ltd. , the Supreme Judicial Court of Maine (Court) ruled that Rockweed located within the intertidal zone is the property of the adjacent upland property owner, and therefore the public cannot enter intertidal lands to harvest Rockweed as a matter of right—a right that has been preserved for the harvest of shellfish species, fish species, and bird species. The legal status of Rockweed is important to the scientists that study its ecological benefits, the harvesters that collect it for commercial purposes, the state agency concerned with its sustainable management as a marine resource, and the coastal landowners that assert that seaweed is their private property. This article explores the legal justification for—and practical resource management issues associated with—the Court’s decision to treat a marine organism such as Rockweed that derives its nutrients from ocean water and not through a root system as private property

    Monitoring Hawaii’s marine protected areas: examining spatial and temporal trends using a seascape approach

    Get PDF
    Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs

    Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors

    Get PDF
    The Arabian Peninsula borders the hottest reefs in the world, and corals living in these extreme environments can provide insight into the effects of warming on coral health and disease. Here, we examined coral reef health at 17 sites across three regions along the northeastern Arabian Peninsula (Persian Gulf, Strait of Hormuz and Oman Sea) representing a gradient of environmental conditions. The Persian Gulf has extreme seasonal fluctuations in temperature and chronic hypersalinity, whereas the other two regions experience more moderate conditions. Field surveys identified 13 coral diseases including tissue loss diseases of unknown etiology (white syndromes) in Porites, Platygyra, Dipsastraea, Cyphastrea, Acropora and Goniopora; growth anomalies in Porites, Platygyra and Dipsastraea; black band disease in Platygyra, Dipsastraea, Acropora, Echinopora and Pavona; bleached patches in Porites and Goniopora and a disease unique to this region, yellow-banded tissue loss in Porites. The most widespread diseases were Platygyra growth anomalies (52.9% of all surveys), Acropora white syndrome (47.1%) and Porites bleached patches (35.3%). We found a number of diseases not yet reported in this region and found differential disease susceptibility among coral taxa. Disease prevalence was higher on reefs within the Persian Gulf (avg. 2.05%) as compared to reefs within the Strait of Hormuz (0.46%) or Oman Sea (0.25%). A high number of localized disease outbreaks (8 of 17 sites) were found, especially within the Persian Gulf (5 of 8 sites). Across all regions, the majority of variation in disease prevalence (82.2%) was associated with the extreme temperature range experienced by these corals combined with measures of organic pollution and proximity to shore. Thermal stress is known to drive a number of coral diseases, and thus, this region provides a platform to study disease at the edge of corals’ thermal range

    Integrating remote sensing products and GIS tools to support marine spatial management in West Hawai'i

    Get PDF
    Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts

    Baseline assessment of Fish and Coral bays, St. John, U.S. Virgin Islands in support of watershed restoration activities, part I: fish, coral and benthic habitats

    Get PDF
    This report provides baseline biological data on fishes, corals and habitats in Coral and Fish Bays, St. John, USVI. A similar report with data on nutrients and contaminants in the same bays is planned to be completed in 2013. Data from NOAA’s long-term Caribbean Coral Reef Ecosystem Monitoring program was compiled to provide a baseline assessment of corals, fishes and habitats from 2001 to 2010, data needed to assess the impacts of erosion control projects installed from 2010 to 2011. The baseline data supplement other information collected as part of the USVI Watershed Stabilization Project, a project funded by the American Recovery and Reinvestment Act of 2009 and distributed through the NOAA Restoration Center, but uses data which is not within the scope of ARRA funded work. We present data on 16 ecological indicators of fishes, corals and habitats. These indicators were chosen because of their sensitivity to changes in water quality noted in the scientific literature (e.g., Rogers 1990, Larsen and Webb 2009). We report long-term averages and corresponding standard errors, plot annual averages, map indicator values and list inventories of coral and fish species identified among surveys. Similar data will be needed in the future to make rigorous comparisons and determine the magnitude of any impacts from watershed stabilization

    Scale-dependent spatial patterns in benthic communities around a tropical island seascape

    Get PDF
    Understanding and predicting patterns of spatial organization across ecological communities is central to the field of landscape ecology, and a similar line of inquiry has begun to evolve sub-tidally among seascape ecologists. Much of our current understanding of the processes driving marine community patterns, particularly in the tropics, has come from small-scale, spatially-discrete data that are often not representative of the broader seascape. Here we expand the spatial extent of seascape ecology studies and combine spatially-expansive in situ digital imagery, oceanographic measurements, spatial statistics, and predictive modeling to test whether predictable patterns emerge between coral reef benthic competitors across scales in response to intra-island gradients in physical drivers. We do this around the entire circumference of a remote, uninhabited island in the central Pacific (Jarvis Island) that lacks the confounding effects of direct human impacts. We show, for the first time, that competing benthic groups demonstrate predictable scaling patterns of organization, with positive autocorrelation in the cover of each group at scales \u3c ~1 km. Moreover, we show how gradients in subsurface temperature and surface wave power drive spatially-abrupt transition points in group dominance, explaining 48–84% of the overall variation in benthic cover around the island. Along the western coast, we documented ten times more sub-surface cooling-hours than any other part of the coastline, with events typically resulting in a drop of 1–4°C over a period of \u3c 5 h. These high frequency temperature fluctuations are indicative of upwelling induced by internal waves and here result in localized nitrogen enrichment (NO 2 + NO 3 ) that promotes hard coral dominance around 44% of the island\u27s perimeter. Our findings show that, in the absence of confounding direct human impacts, the spatial organization of coral reef benthic competitors are predictable and somewhat bounded across the seascape by concurrent gradients in physical drivers

    Embedding the value of coastal ecosystem services into climate change adaptation planning

    Get PDF
    Coastal habitats, such as salt marshes and dune systems, can protect communities from hazards by reducing coastline exposure. However, these critical habitats and their diverse ecosystem services are threatened by coastal development and the impacts from a changing climate. Ever increasing pressure on coastal habitats calls for coastal climate adaptation efforts that mitigate or adapt to these pressures in ways that maintain the integrity of coastal landscapes. An important challenge for decisionmakers is determining the best mitigation and adaptation strategies that not only protect human lives and property, but also safeguard the ability of coastal habitats to provide a broad suite of benefits. Here, we present a potential pathway for local-scale climate change adaptation planning through the identification and mapping of natural habitats that provide the greatest benefits to coastal communities. The methodology coupled a coastal vulnerability model with a climate adaptation policy assessment in an effort to identify priority locations for nature-based solutions that reduce vulnerability of critical assets using feasible land-use policy methods. Our results demonstrate the critical role of natural habitats in providing the ecosystem service of coastal protection in California. We found that specific dune habitats play a key role in reducing erosion and inundation of the coastline and that several wetland areas help to absorb energy from storms and provide a protective service for the coast of Marin county, California, USA. Climate change and adaptation planning are globally relevant issues in which the scalability and transferability of solutions must be considered. This work outlines an iterative approach for climate adaptation planning at a local-scale, with opportunity to consider the scalability of an iterative science-policy engagement approach to regional, national, and international levels

    Spatial and temporal scales of coral reef fish ecological research and management: a systematic map protocol

    Get PDF
    Background Coral reefs are rapidly changing in response to local and global stressors. Research to better understand and inform the management of these stressors is burgeoning. However, in situ studies of coral reef ecology are constrained by complex logistics and limited resources. Many reef studies are also hampered by the scale-dependent nature of ecological patterns, and inferences made on causal relationships within coral reef systems are limited by the scales of observation. This is because most socio-ecological studies are conducted at scales relevant to the phenomenon of interest. However, management often occurs across a significantly broader, often geopolitical, range of scales. While there is a critical need for incisive coral reef management actions at relevant spatial and temporal scales, it remains unclear to what extent the scales of empirical study overlap with the scales at which management inferences and recommendations are made. This systematic map protocol will evaluate this potential scale mismatch with the goal of raising awareness about the significance of effectively addressing and reporting the scales at which researchers collect data and make assumptions. Methods We will use the Collaboration for Environmental Evidence (CEE) systematic mapping guidelines to identify relevant studies using a framework-based synthesis to summarise the spatial and temporal scales of coral reef fish ecology research and the scales at which management inferences or recommendations are made. Using tested predefined terms, we will search for relevant published academic and grey literature, including bibliographic databases, web-based search engines, and organisational websites. Inclusion criteria for the evidence map are empirical studies that focus on coral reef fish ecological organisation and processes, those informing management interventions and policy decisions, and management documents that cite coral reef research for management decision-making. Study results will be displayed graphically using data matrices and heat maps. This is the first attempt to systematically assess and compare the scales of socio-ecological research conducted on coral reef systems with their management

    National summary of NOAA's shallow-water benthic habitat mapping of U.S. coral reef ecosystems

    Get PDF
    Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats

    Advancing the integration of spatial data to map human and natural drivers on coral reefs

    Get PDF
    <div><p>A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-<i>a</i>, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs.</p></div
    • 

    corecore